Sains Malaysiana 54(10)(2025): 2477-2497
http://doi.org/10.17576/jsm-2025-5410-12
A Review on Synthesis, Properties and Biomedical
Applications of Akermanite
(Suatu Ulasan Sintesis, Sifat dan Aplikasi Bioperubatan Akermanite)
NUR HASNIDAH AHMAD SHUKERI1,*,
SYED NUZUL FADZLI SYED ADAM1, HASMALIZA MOHAMAD2 & HEAH CHENG YONG1
1Faculty of Mechanical
Engineering and Technology, Universiti Malaysia
Perlis (UniMAP), 02600 Ulu Pauh,
Perlis, Malaysia
2School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia (USM),
14300 Nibong Tebal, Pulau Pinang, Malaysia
Received: 20 February
2025/Accepted: 30 July 2025
Abstract
Akermanite is a bioactive calcium silicate ceramic that recently has drawn large attention
and interest in biomedical devices by numerous researchers due to its favorable properties and characteristics because of the
prominent element contents in this material which are Ca2+, Mg2+,
and Si4+. The properties of akermanite have been studied through size particle, phase analysis, structure morphology,
spectra analysis, and thermal analysis. Besides, the mechanical strength and
biological properties of the akermanite also has been
investigated in order to control the intended properties complied with the
proper reactions of the living organism in the human body. However, despite the
huge interest in akermanite in biomedical
applications, a very restricted knowledge on the akermanite overview regarding its behavior and potentials are
hardly to be acquired to the best of our abilities. Therefore, this review is
to highlight and discuss the properties of akermanite formed upon the various methods of synthesis and various processing parameters
applied and its feasible potentials in a broad range of biomedical devices
practices.
Keywords: Akermanite; bioceramic; biomedical application; precursor; synthesis
Abstrak
Akermanite ialah seramik kalsium silikat bioaktif yang kini mendapat perhatian dan minat yang besar dalam peranti bioperubatan oleh ramai penyelidik disebabkan oleh sifat dan cirinya yang menguntungkan daripada kandungan unsur utama dalam bahan ini, iaitu Ca²⁺, Mg²⁺ dan Si⁴⁺. Sifat akermanite telah dikaji melalui analisis saiz zarah, fasa, morfologi struktur, spektrum dan analisis haba. Selain itu, kekuatan mekanikal dan sifat biologi akermanite juga telah dikaji untuk memastikan sifat yang diinginkan menunjukkan reaksi yang sesuai dalam tubuh manusia. Namun, walaupun terdapat minat yang tinggi terhadap akermanite dalam aplikasi bioperubatan, pengetahuan mengenai tingkah laku dan potensinya masih sangat terhad. Oleh itu, ulasan ini bertujuan untuk mengetengahkan dan membincangkan sifat akermanite yang terbentuk melalui pelbagai kaedah sintesis dan parameter pemprosesan yang digunakan serta potensinya dalam pelbagai aplikasi peranti bioperubatan.
Kata kunci: Akermanite; aplikasi bioperubatan; bahan awal; bioseramik; sintesis
REFERENCES
Arkame, Y., Harrati,
A., Jannaoui, M., Et-Tayea, Y., Yamari, I., Sdiri, A. & Sadik, C. 2023. Effects of slag addition
and sintering temperature on the technological properties of dolomite based
porous ceramics. Open Ceramics 13: 100333.
https://doi.org/10.1016/j.oceram.2023.100333
Arokiasamy, P., Al Bakri Abdullah, M.M.,
Abd Rahim, S.Z., Luhar, S., Sandu, A.V., Jamil, N.H.
& Nabiałek, M. 2022. Synthesis methods of
hydroxyapatite from natural sources: A review. Ceramics International 48(11): 14959-14979. https://doi.org/10.1016/j.ceramint.2022.03.064
Bakhsheshi-Rad, H.R., Akbari, M., Ismail,
A.F., Aziz, M., Hadisi, Z., Pagan, E., Daroonparvar, M. & Chen, X. 2019. Coating biodegradable
magnesium alloys with electrospun poly-l-lactic acid-åkermanite-doxycycline nanofibers for enhanced
biocompatibility, antibacterial activity, and corrosion resistance. Surface
and Coatings Technology 377: 124898.
https://doi.org/10.1016/j.surfcoat.2019.124898
Bernardo, E., Carlotti, J-F., Dias, P.M.,
Fiocco, L., Colombo, P., Treccani, L., Hess, U. &
Rezwan, K. 2014. Novel akermanite-based bioceramics from preceramic polymers and oxide fillers. Ceramics
International 40(1): 1029-1035.
https://doi.org/10.1016/j.ceramint.2013.06.100
Cai, W.K., Liu, J.H., Zhou, C.H., Keeling,
J. & Glasmacher, U.A. 2021. Structure, genesis
and resources efficiency of dolomite: New insights and remaining enigmas. Chemical
Geology 573: 120191. https://doi.org/10.1016/j.chemgeo.2021.120191.
Che Azurahanim Che Abdullah, Emmellie Laura Albert, Lau Gee Een, Mazni Abu Zarin & Mohd
Zaki Mohd Yusoff. 2022. Effect of thermal treatment on physical properties of
Malaysian dolomitic limestone. Int. J. Electroactive Mater. 10: 18-23.
Choudhary, R., Koppala, S. & Swamiappan, S. 2015. Bioactivity studies of calcium
magnesium silicate prepared from eggshell waste by sol-gel combustion
synthesis. Journal of Asian Ceramic Societies 3(2): 173-177.
https://doi.org/10.1016/j.jascer.2015.01.002
Collin, M.S., Venkatraman, S.K., Sriramulu,
M., Shanmugam, S., Drweesh, E.A., Elnagar,
M.M., Mosa, E.S. & Sasikumar, S. 2021. Solution combustion synthesis of
functional diopside, akermanite, and merwinite bioceramics: Excellent biomineralization, mechanical
strength, and antibacterial ability. Materials Today Communications 27:
102365. https://doi.org/10.1016/j.mtcomm.2021.102365
Dasan, A., Kraxner, J., Grigolato,
L., Savio, G., Elsayed, H., Galusek, D. &
Bernardo, E. 2022. 3D printing of hierarchically porous lattice structures
based on åkermanite glass microspheres and reactive silicone
binder. Journal of Functional Biomaterials 13(1): 8.
https://doi.org/10.3390/jfb13010008
Dasan, A., Talimian,
A., Kraxner, J., Galusek, D., Elsayed, H. &
Bernardo, E. 2021. Åkermanite glass microspheres:
Preparation and perspectives of sinter-crystallization. International
Journal of Applied Glass Science 12: 551-561.
https://doi.org/10.1111/ijag.16115
Dasan, A., Elsayed, H., Kraxner, J., Galusek, D., Colombo, P. & Bernardo, E. 2020.
Engineering of silicone-based mixtures for the digital light processing of åkermanite scaffolds. Journal of the European Ceramic Society 40(7): 2566-2572. https://doi.org/10.1016/j.jeurceramsoc.2019.11.087
Dasan, A., Elsayed, H., Kraxner, J., Galusek, D. & Bernardo, E. 2019. Hierarchically porous
3D-printed akermanite scaffolds from silicones and
engineered fillers. Journal of the European Ceramic Society 39(14):
4445-4449. https://doi.org/10.1016/j.jeurceramsoc.2019.06.021
Deng, Z.L., Pan, M.Z., Hua, S.B., Wu, J.M.,
Zhang, X.Y. & Shi, Y.S. 2023. Mechanical and degradation properties of
triply periodic minimal surface (TPMS) hydroxyapatite & akermanite scaffolds with functional gradient structure. Ceramics International 49(12): 20808-20816. https://doi.org/10.1016/j.ceramint.2023.03.213
Díaz-Pérez, M., Grima, L., Moshtaghioun, B.M. & Peña, J.I. 2021. CaO–MgO–SiO2–P2O5-
based multiphase bio-ceramics fabricated by directional solidification:
Microstructure features and in vitro bioactivity studies. Ceramics
International 47(12): 17041-17048.
https://doi.org/10.1016/j.ceramint.2021.03.011
Dobriţa, C.I., Bădănoiu,
A.I., Voicu, G., Nicoară, A.I., Dumitru, S.M., Puşcaşu,
M.E., Chiriac, Ș., Ene, R. & Iordache, F.
2023. Porous bioceramic scaffolds based on akermanite obtained by 3D printing for bone tissue
engineering. Ceramics International 49(22): 35898-35906.
https://doi.org/10.1016/j.ceramint.2023.08.270
Dong, X., Heidari, A., Mansouri, A., Hao,
W.S., Dehghani, M., Saber-Samandari, S., Toghraie, D. & Khandan, A. 2021. Investigation of the
mechanical properties of a bony scaffold for comminuted distal radial fractures: Addition of akermanite nanoparticles and using a freeze-drying technique. Journal of the Mechanical Behavior of Biomedical Materials 121: 104643.
https://doi.org/10.1016/j.jmbbm.2021.104643
Duman, Ş. & Bulut, B. 2021. Effect
of akermanite powders on mechanical properties and
bioactivity of chitosan-based scaffolds produced by 3D-bioprinting. Ceramics
International 47(10): 13912-13921.
https://doi.org/10.1016/j.ceramint.2021.01.258
Han, Z., Feng, P., Gao, C., Shen, Y.,
Shuai, C. & Peng, S. 2014. Microstructure, mechanical properties and in
vitro bioactivity of akermanite scaffolds
fabricated by laser sintering. Bio-Medical Materials and Engineering 24(6): 2073-2080. https://doi.org/10.3233/BME-141017
Harrati, A., Arkame, Y.,
Manni, A., Aqdim, S., Zmemla,
R., Chari, A., El Bouari, A., El Hassani,
I-E.E.A., Sdiri, A., Hassani, F.O. & Sadik, C.
2022. Akermanite-based ceramics from Moroccan
dolomite and perlite: Characterization and in vitro bioactivity
assessment. Open Ceramics 10: 100276.
https://doi.org/10.1016/j.oceram.2022.100276
Hussin, K., Shamsul, J., Ruzaidi, C.M., Sobri, M.I., Nazry, M.S. & Nizar, K. 2006. The development of
artificial marble from dolomite (Batu Reput). 2006 TMS Fall Extraction and Processing
Division: Sohn International Symposium. pp. 617-621.
https://doi.org/10.13140/2.1.1044.8325
Li, X., Zhang, H. & Zhang, H. 2024.
Fabrication of β-TCP/Akermanite composite
scaffold via DLP and in-situ modification of micro-nano surface
morphology for bone repair. Ceramics International 50(2, Part A):
2659-2669. https://doi.org/10.1016/j.ceramint.2023.10.276
Liebschner, M.A.K. 2004. Biomechanical considerations
of animal models used in tissue engineering of bone. Biomaterials 25(9):
1697-1714. https://doi.org/10.1016/S0142-9612(03)00515-5
Liu, A., Sun, M., Yang, X., Ma, C., Liu,
Y., Yang, X., Yan, S. & Gou, Z. 2016. Three-dimensional printing Akermanite porous scaffolds for load-bearing bone defect
repair: An investigation of osteogenic capability and mechanical evolution. Journal
of Biomaterials Applications 31(5): 650-660.
https://doi.org/10.1177/0885328216664839
Liu, Q., Cen, L., Yin, S., Chen, L., Liu,
G., Chang, J. & Cui, L. 2008. A comparative study of proliferation and osteogenic
differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics. Biomaterials 29(36): 4792-4799.
https://doi.org/10.1016/j.biomaterials.2008.08.039
Liu, W., Wang, T., Zhao, X., Dan, X., Lu,
W.W. & Pan, H. 2016. Akermanite used as an alkaline biodegradable implants for the treatment of
osteoporotic bone defect. Bioactive Materials 1(2): 151-159.
https://doi.org/10.1016/j.bioactmat.2016.11.004
Ma, N., Ma, B., Zhou, Y., Zhu, H., Zhou,
Y., Huan, Z., Wang, P. & Chang, J. 2019. In vivo evaluation of the subchronic systemic toxicity of akermanite bioceramic for bone regeneration following ISO
standard methods. RSC Advances 9(31): 17530-17536.
https://doi.org/10.1039/c9ra02496d
Mohammadi, H., Baba Ismail, Y.M., Bin
Shariff, K.A. & Mohd Noor, A.F. 2021a. Microstructure evolution, grain
growth kinetics and mechanical properties of Ca2MgSi2O7 bioceramics sintered at various temperatures. Processing
and Application of Ceramics 15(4): 357-365.
https://doi.org/10.2298/PAC2104357M
Mohammadi, H., Sepantafar,
M., Muhamad, N. & Sulong, A.B. 2021b. How does scaffold porosity conduct
bone tissue regeneration? Advanced Engineering Materials 23(10):
2100463. https://doi.org/10.1002/adem.202100463
Mohammadi, H., Baba Ismail, Y.M., Bin
Shariff, K.A. & Mohd Noor, A.F. 2018. Synthesis and characterization of akermanite by mechanical milling and subsequent heat
treatment. Journal of Physics: Conference Series 1082: 012021.
https://doi.org/10.1088/1742-6596/1082/1/012021
Myat-Htun, M., Mohammadi, H., Mohd Noor, A.F.,
Kawashita, M. & Baba Ismail, Y.M. 2021. Comprehensive investigation of
phase formation mechanism and physico-mechanical
properties of ca-Mg-silicate. ASEAN Engineering Journal 11(2): 37-50.
https://doi.org/10.11113/AEJ.V11.16676
Najafinezhad, A., Abdellahi, M., Ghayour,
H., Soheily, A., Chami, A. & Khandan, A. 2017. A
comparative study on the synthesis mechanism, bioactivity and mechanical
properties of three silicate bioceramics. Materials
Science and Engineering C 72: 259-267. https://doi.org/10.1016/j.msec.2016.11.084
Nazry, M.S., Hafiz, F.K., Nizar, K.I., Ruzaidi, C.M., Saad, S.A. & Daud, S. 2006.
Characterization and application of dolomite rock in Perlis. Proceedings of
the 1st International Conference on Natural Resources Engineering &
Technology, 24-25th July, Putrajaya, Malaysia, pp. 465-470.
Putra, N.E., Leeflang, M.A., Klimopoulou,
M., Dong, J., Taheri, P., Huan, Z., Fratila-Apachitei,
L.E., Mol, J.M.C., Chang, J., Zhou, J. & Zadpoor,
A.A. 2023. Extrusion-based 3D printing of biodegradable, osteogenic,
paramagnetic, and porous FeMn-akermanite bone
substitutes. Acta Biomaterialia 162: 182-198.
https://doi.org/10.1016/j.actbio.2023.03.033
Razavi, M., Fathi, M., Savabi, O., Beni,
B.H., Vashaee, D. & Tayebi, L. 2014a. Surface
microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7)
coating on biodegradable magnesium alloy for biomedical applications. Colloids
and Surfaces B: Biointerfaces 117: 432-440.
https://doi.org/10.1016/j.colsurfb.2013.12.011
Razavi, M., Fathi, M., Savabi, O., Mohammad
Razavi, S., Beni, B.H., Vashaee, D. & Tayebi, L.
2014b. Controlling the degradation rate of bioactive magnesium implants by
electrophoretic deposition of akermanite coating. Ceramics
International 40(3): 3865-3872. https://doi.org/10.1016/j.ceramint.2013.08.027
Ren, Q., Ren, Y., Wu, X., Bai, W., Zheng,
J. & Hai, O. 2019. Effects of pyrolusite and dolomite co-additives on the
structure and properties of bauxite-based ceramics. Materials Chemistry and
Physics 230: 207-214. https://doi.org/10.1016/j.matchemphys.2019.03.072
Shahraki, B.K., Mehrabi,
B. & Dabiri, R. 2009. Thermal behavior of Zefreh dolomite mine (Centeral Iran). Journal of Mining and Metallurgy, Section B: Metallurgy 45B(1): 35-44. https://doi.org/10.2298/JMMB0901035S
Sharafabadi, A.K., Abdellahi,
M., Kazemi, A., Khandan, A. & Ozada, N. 2017. A
novel and economical route for synthesizing akermanite (Ca2MgSi2O7) nano-bioceramic. Materials Science and Engineering C 71: 1072-1078.
https://doi.org/10.1016/j.msec.2016.11.021
Sharma, S. 2022. Significant contribution
of deeper traps for long afterglow process in synthesized thermoluminescence
material. Journal of Mineral and Material Science (JMMS) 3(4): 1049.
https://doi.org/10.54026/jmms/1049
Tavangarian, F., Zolko, C.A. & Davami,
K. 2021. Synthesis, characterization and formation mechanisms of
nanocrystalline akermanite powder. Journal of
Materials Research and Technology 11: 792-800.
https://doi.org/10.1016/j.jmrt.2021.01.021
Tavangarian, F., Zolko,
C.A., Sadeghzade, S., Fayed, M. & Davami, K. 2020. Fabrication, mechanical properties and in‐vitro behavior of akermanite bioceramic. Materials 13(21): 4887.
https://doi.org/10.3390/ma13214887
Tengku Mustafa, T.N.A.S., Munusamy, S.R.R.,
Uy Lan, D.N. & Yunos, N.F.M. 2016. Physical and structural transformations
of Perlis carbonate rocks via mechanical activation route. Procedia
Chemistry 19: 673-680. https://doi.org/10.1016/j.proche.2016.03.069
Tursunov, O., Dobrowolski, J. & Nowak,
W. 2015. Catalytic energy production from municipal solid waste biomass: Case
study in Perlis-Malaysia. World Journal of Environmental Engineering 3(1): 7-14. https://doi.org/10.12691/wjee-3-1-2
Wu, C. & Chang, J. 2004. Synthesis and
apatite-formation ability of akermanite. Materials
Letters 58(9): 2415-2417. https://doi.org/10.1016/j.matlet.2004.02.039
Yamamoto, O., Ohira, T., Mohan, D.J.,
Fukuda, M., Özkal, B., Sawai, J. & Nakagawa, Z-e.
2008. Antibacterial characteristics of carboncoated CaCO3/Mg0 powder led by the pyrolysis of poly (vinyl
alcohol)-dolomite mixture. TANSO 2008(232): 77-81.
https://doi.org/10.7209/tanso.2008.77
Yang, H., Hazen, R.M., Downs, R.T. &
Finger, L.W. 1997. Structural change associated with the incommensurate-normal
phase transition in akermanite, Ca2MgSi2O7,
at high pressure. Physics and Chemistry of Minerals 24(7): 510-519.
https://doi.org/10.1007/s002690050066
Youness, R.A., Zawrah,
M.F. & Taha, M.A. 2024. Fabrication of akermanite scaffolds with high bioactivity and mechanical properties suitable for bone
tissue engineering application. Ceramics International 50(18 Part A):
32253-32264. https://doi.org/10.1016/j.ceramint.2024.06.033
Yue, X., Jiao, X., Xu, C., Zhang, Y., Wu,
F., Wang, H., Zhu, Q., Zhang, Z., Zhao, L., Sun, X., Yang, X., He, F., Gou, Z.,
Yang, G. & Zhang, L. 2024. 3D printing novel porous granule-type bioceramics via magnesium tuning biological performances
beneficial for implantation and clinical translation. Chemical Engineering
Journal 486: 150401. https://doi.org/10.1016/j.cej.2024.150401
Zadehnajar, P., Mirmusavi,
M.H., Soleymani Eil Bakhtiari, S., Bakhsheshi‐Rad, H.R., Karbasi, S., RamaKrishna,
S. & Berto, F. 2021. Recent advances on akermanite calcium‐silicate ceramic for biomedical applications. International
Journal of Applied Ceramic Technology 18(6): 1901-1920. https://doi.org/10.1111/ijac.13814
Zhang, M., Yang, N., Dehghan-Manshadi,
A., Venezuela, J., Bermingham, M.J. & Dargusch,
M.S. 2023. Fabrication and properties of biodegradable akermanite-reinforced
Fe35Mn alloys for temporary orthopedic implant
applications. ACS Biomaterials Science and Engineering 9(3): 1261-1273. https://doi.org/10.1021/acsbiomaterials.2c01228
*Corresponding author; email:
hasnidahnur@gmail.com