Sains Malaysiana 54(10)(2025): 2477-2497

http://doi.org/10.17576/jsm-2025-5410-12

 

A Review on Synthesis, Properties and Biomedical Applications of Akermanite

(Suatu Ulasan Sintesis, Sifat dan Aplikasi Bioperubatan Akermanite)

 

NUR HASNIDAH AHMAD SHUKERI1,*, SYED NUZUL FADZLI SYED ADAM1, HASMALIZA MOHAMAD2 & HEAH CHENG YONG1

 

1Faculty of Mechanical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), 02600 Ulu Pauh, Perlis, Malaysia
2School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Pulau Pinang, Malaysia

 

Received: 20 February 2025/Accepted: 30 July 2025

 

Abstract

Akermanite is a bioactive calcium silicate ceramic that recently has drawn large attention and interest in biomedical devices by numerous researchers due to its favorable properties and characteristics because of the prominent element contents in this material which are Ca2+, Mg2+, and Si4+. The properties of akermanite have been studied through size particle, phase analysis, structure morphology, spectra analysis, and thermal analysis. Besides, the mechanical strength and biological properties of the akermanite also has been investigated in order to control the intended properties complied with the proper reactions of the living organism in the human body. However, despite the huge interest in akermanite in biomedical applications, a very restricted knowledge on the akermanite overview regarding its behavior and potentials are hardly to be acquired to the best of our abilities. Therefore, this review is to highlight and discuss the properties of akermanite formed upon the various methods of synthesis and various processing parameters applied and its feasible potentials in a broad range of biomedical devices practices.

 

Keywords: Akermanite; bioceramic; biomedical application; precursor; synthesis

 

Abstrak

Akermanite ialah seramik kalsium silikat bioaktif yang kini mendapat perhatian dan minat yang besar dalam peranti bioperubatan oleh ramai penyelidik disebabkan oleh sifat dan cirinya yang menguntungkan daripada kandungan unsur utama dalam bahan ini, iaitu Ca²⁺, Mg²⁺ dan Si⁴⁺. Sifat akermanite telah dikaji melalui analisis saiz zarah, fasa, morfologi struktur, spektrum dan analisis haba. Selain itu, kekuatan mekanikal dan sifat biologi akermanite juga telah dikaji untuk memastikan sifat yang diinginkan menunjukkan reaksi yang sesuai dalam tubuh manusia. Namun, walaupun terdapat minat yang tinggi terhadap akermanite dalam aplikasi bioperubatan, pengetahuan mengenai tingkah laku dan potensinya masih sangat terhad. Oleh itu, ulasan ini bertujuan untuk mengetengahkan dan membincangkan sifat akermanite yang terbentuk melalui pelbagai kaedah sintesis dan parameter pemprosesan yang digunakan serta potensinya dalam pelbagai aplikasi peranti bioperubatan.

 

Kata kunci: Akermanite; aplikasi bioperubatan; bahan awal; bioseramik; sintesis

 

REFERENCES

Arkame, Y., Harrati, A., Jannaoui, M., Et-Tayea, Y., Yamari, I., Sdiri, A. & Sadik, C. 2023. Effects of slag addition and sintering temperature on the technological properties of dolomite based porous ceramics. Open Ceramics 13: 100333. https://doi.org/10.1016/j.oceram.2023.100333

Arokiasamy, P., Al Bakri Abdullah, M.M., Abd Rahim, S.Z., Luhar, S., Sandu, A.V., Jamil, N.H. & Nabiałek, M. 2022. Synthesis methods of hydroxyapatite from natural sources: A review. Ceramics International 48(11): 14959-14979. https://doi.org/10.1016/j.ceramint.2022.03.064

Bakhsheshi-Rad, H.R., Akbari, M., Ismail, A.F., Aziz, M., Hadisi, Z., Pagan, E., Daroonparvar, M. & Chen, X. 2019. Coating biodegradable magnesium alloys with electrospun poly-l-lactic acid-åkermanite-doxycycline nanofibers for enhanced biocompatibility, antibacterial activity, and corrosion resistance. Surface and Coatings Technology 377: 124898. https://doi.org/10.1016/j.surfcoat.2019.124898

Bernardo, E., Carlotti, J-F., Dias, P.M., Fiocco, L., Colombo, P., Treccani, L., Hess, U. & Rezwan, K. 2014. Novel akermanite-based bioceramics from preceramic polymers and oxide fillers. Ceramics International 40(1): 1029-1035. https://doi.org/10.1016/j.ceramint.2013.06.100

Cai, W.K., Liu, J.H., Zhou, C.H., Keeling, J. & Glasmacher, U.A. 2021. Structure, genesis and resources efficiency of dolomite: New insights and remaining enigmas. Chemical Geology 573: 120191. https://doi.org/10.1016/j.chemgeo.2021.120191.

Che Azurahanim Che Abdullah,  Emmellie Laura Albert, Lau Gee Een, Mazni Abu Zarin & Mohd Zaki Mohd Yusoff. 2022. Effect of thermal treatment on physical properties of Malaysian dolomitic limestone. Int. J. Electroactive Mater. 10: 18-23.

Choudhary, R., Koppala, S. & Swamiappan, S. 2015. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol-gel combustion synthesis. Journal of Asian Ceramic Societies 3(2): 173-177. https://doi.org/10.1016/j.jascer.2015.01.002

Collin, M.S., Venkatraman, S.K., Sriramulu, M., Shanmugam, S., Drweesh, E.A., Elnagar, M.M., Mosa, E.S. & Sasikumar, S. 2021. Solution combustion synthesis of functional diopside, akermanite, and merwinite bioceramics: Excellent biomineralization, mechanical strength, and antibacterial ability. Materials Today Communications 27: 102365. https://doi.org/10.1016/j.mtcomm.2021.102365

Dasan, A., Kraxner, J., Grigolato, L., Savio, G., Elsayed, H., Galusek, D. & Bernardo, E. 2022. 3D printing of hierarchically porous lattice structures based on åkermanite glass microspheres and reactive silicone binder. Journal of Functional Biomaterials 13(1): 8. https://doi.org/10.3390/jfb13010008

Dasan, A., Talimian, A., Kraxner, J., Galusek, D., Elsayed, H. & Bernardo, E. 2021. Åkermanite glass microspheres: Preparation and perspectives of sinter-crystallization. International Journal of Applied Glass Science 12: 551-561. https://doi.org/10.1111/ijag.16115

Dasan, A., Elsayed, H., Kraxner, J., Galusek, D., Colombo, P. & Bernardo, E. 2020. Engineering of silicone-based mixtures for the digital light processing of åkermanite scaffolds. Journal of the European Ceramic Society 40(7): 2566-2572. https://doi.org/10.1016/j.jeurceramsoc.2019.11.087

Dasan, A., Elsayed, H., Kraxner, J., Galusek, D. & Bernardo, E. 2019. Hierarchically porous 3D-printed akermanite scaffolds from silicones and engineered fillers. Journal of the European Ceramic Society 39(14): 4445-4449. https://doi.org/10.1016/j.jeurceramsoc.2019.06.021

Deng, Z.L., Pan, M.Z., Hua, S.B., Wu, J.M., Zhang, X.Y. & Shi, Y.S. 2023. Mechanical and degradation properties of triply periodic minimal surface (TPMS) hydroxyapatite & akermanite scaffolds with functional gradient structure. Ceramics International 49(12): 20808-20816. https://doi.org/10.1016/j.ceramint.2023.03.213

Díaz-Pérez, M., Grima, L., Moshtaghioun, B.M. & Peña, J.I. 2021. CaO–MgO–SiO2–P2O5- based multiphase bio-ceramics fabricated by directional solidification: Microstructure features and in vitro bioactivity studies. Ceramics International 47(12): 17041-17048. https://doi.org/10.1016/j.ceramint.2021.03.011

Dobriţa, C.I., Bădănoiu, A.I., Voicu, G., Nicoară, A.I., Dumitru, S.M., Puşcaşu, M.E., Chiriac, Ș., Ene, R. & Iordache, F. 2023. Porous bioceramic scaffolds based on akermanite obtained by 3D printing for bone tissue engineering. Ceramics International 49(22): 35898-35906. https://doi.org/10.1016/j.ceramint.2023.08.270

Dong, X., Heidari, A., Mansouri, A., Hao, W.S., Dehghani, M., Saber-Samandari, S., Toghraie, D. & Khandan, A. 2021. Investigation of the mechanical properties of a bony scaffold for comminuted distal radial fractures: Addition of akermanite nanoparticles and using a freeze-drying technique. Journal of the Mechanical Behavior of Biomedical Materials 121: 104643. https://doi.org/10.1016/j.jmbbm.2021.104643

Duman, Ş. & Bulut, B. 2021. Effect of akermanite powders on mechanical properties and bioactivity of chitosan-based scaffolds produced by 3D-bioprinting. Ceramics International 47(10): 13912-13921. https://doi.org/10.1016/j.ceramint.2021.01.258

Han, Z., Feng, P., Gao, C., Shen, Y., Shuai, C. & Peng, S. 2014. Microstructure, mechanical properties and in vitro bioactivity of akermanite scaffolds fabricated by laser sintering. Bio-Medical Materials and Engineering 24(6): 2073-2080. https://doi.org/10.3233/BME-141017

Harrati, A., Arkame, Y., Manni, A., Aqdim, S., Zmemla, R., Chari, A., El Bouari, A., El Hassani, I-E.E.A., Sdiri, A., Hassani, F.O. & Sadik, C. 2022. Akermanite-based ceramics from Moroccan dolomite and perlite: Characterization and in vitro bioactivity assessment. Open Ceramics 10: 100276. https://doi.org/10.1016/j.oceram.2022.100276

Hussin, K., Shamsul, J., Ruzaidi, C.M., Sobri, M.I., Nazry, M.S. & Nizar, K. 2006. The development of artificial marble from dolomite (Batu Reput). 2006 TMS Fall Extraction and Processing Division: Sohn International Symposium. pp. 617-621. https://doi.org/10.13140/2.1.1044.8325

Li, X., Zhang, H. & Zhang, H. 2024. Fabrication of β-TCP/Akermanite composite scaffold via DLP and in-situ modification of micro-nano surface morphology for bone repair. Ceramics International 50(2, Part A): 2659-2669. https://doi.org/10.1016/j.ceramint.2023.10.276

Liebschner, M.A.K. 2004. Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials 25(9): 1697-1714. https://doi.org/10.1016/S0142-9612(03)00515-5

Liu, A., Sun, M., Yang, X., Ma, C., Liu, Y., Yang, X., Yan, S. & Gou, Z. 2016. Three-dimensional printing Akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution. Journal of Biomaterials Applications 31(5): 650-660. https://doi.org/10.1177/0885328216664839

Liu, Q., Cen, L., Yin, S., Chen, L., Liu, G., Chang, J. & Cui, L. 2008. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics. Biomaterials 29(36): 4792-4799. https://doi.org/10.1016/j.biomaterials.2008.08.039

Liu, W., Wang, T., Zhao, X., Dan, X., Lu, W.W. & Pan, H. 2016. Akermanite used as an alkaline biodegradable implants for the treatment of osteoporotic bone defect. Bioactive Materials 1(2): 151-159. https://doi.org/10.1016/j.bioactmat.2016.11.004

Ma, N., Ma, B., Zhou, Y., Zhu, H., Zhou, Y., Huan, Z., Wang, P. & Chang, J. 2019. In vivo evaluation of the subchronic systemic toxicity of akermanite bioceramic for bone regeneration following ISO standard methods. RSC Advances 9(31): 17530-17536. https://doi.org/10.1039/c9ra02496d

Mohammadi, H., Baba Ismail, Y.M., Bin Shariff, K.A. & Mohd Noor, A.F. 2021a. Microstructure evolution, grain growth kinetics and mechanical properties of Ca2MgSi2O7 bioceramics sintered at various temperatures. Processing and Application of Ceramics 15(4): 357-365. https://doi.org/10.2298/PAC2104357M

Mohammadi, H., Sepantafar, M., Muhamad, N. & Sulong, A.B. 2021b. How does scaffold porosity conduct bone tissue regeneration? Advanced Engineering Materials 23(10): 2100463. https://doi.org/10.1002/adem.202100463

Mohammadi, H., Baba Ismail, Y.M., Bin Shariff, K.A. & Mohd Noor, A.F. 2018. Synthesis and characterization of akermanite by mechanical milling and subsequent heat treatment. Journal of Physics: Conference Series 1082: 012021. https://doi.org/10.1088/1742-6596/1082/1/012021

Myat-Htun, M., Mohammadi, H., Mohd Noor, A.F., Kawashita, M. & Baba Ismail, Y.M. 2021. Comprehensive investigation of phase formation mechanism and physico-mechanical properties of ca-Mg-silicate. ASEAN Engineering Journal 11(2): 37-50. https://doi.org/10.11113/AEJ.V11.16676

Najafinezhad, A., Abdellahi, M., Ghayour, H., Soheily, A., Chami, A. & Khandan, A. 2017. A comparative study on the synthesis mechanism, bioactivity and mechanical properties of three silicate bioceramics. Materials Science and Engineering C 72: 259-267. https://doi.org/10.1016/j.msec.2016.11.084

Nazry, M.S., Hafiz, F.K., Nizar, K.I., Ruzaidi, C.M., Saad, S.A. & Daud, S. 2006. Characterization and application of dolomite rock in Perlis. Proceedings of the 1st International Conference on Natural Resources Engineering & Technology, 24-25th July, Putrajaya, Malaysia, pp. 465-470.

Putra, N.E., Leeflang, M.A., Klimopoulou, M., Dong, J., Taheri, P., Huan, Z., Fratila-Apachitei, L.E., Mol, J.M.C., Chang, J., Zhou, J. & Zadpoor, A.A. 2023. Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes. Acta Biomaterialia 162: 182-198. https://doi.org/10.1016/j.actbio.2023.03.033

Razavi, M., Fathi, M., Savabi, O., Beni, B.H., Vashaee, D. & Tayebi, L. 2014a. Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) coating on biodegradable magnesium alloy for biomedical applications. Colloids and Surfaces B: Biointerfaces 117: 432-440. https://doi.org/10.1016/j.colsurfb.2013.12.011

Razavi, M., Fathi, M., Savabi, O., Mohammad Razavi, S., Beni, B.H., Vashaee, D. & Tayebi, L. 2014b. Controlling the degradation rate of bioactive magnesium implants by electrophoretic deposition of akermanite coating. Ceramics International 40(3): 3865-3872. https://doi.org/10.1016/j.ceramint.2013.08.027

Ren, Q., Ren, Y., Wu, X., Bai, W., Zheng, J. & Hai, O. 2019. Effects of pyrolusite and dolomite co-additives on the structure and properties of bauxite-based ceramics. Materials Chemistry and Physics 230: 207-214. https://doi.org/10.1016/j.matchemphys.2019.03.072

Shahraki, B.K., Mehrabi, B. & Dabiri, R. 2009. Thermal behavior of Zefreh dolomite mine (Centeral Iran). Journal of Mining and Metallurgy, Section B: Metallurgy 45B(1): 35-44. https://doi.org/10.2298/JMMB0901035S

Sharafabadi, A.K., Abdellahi, M., Kazemi, A., Khandan, A. & Ozada, N. 2017. A novel and economical route for synthesizing akermanite (Ca2MgSi2O7) nano-bioceramic. Materials Science and Engineering C 71: 1072-1078. https://doi.org/10.1016/j.msec.2016.11.021

Sharma, S. 2022. Significant contribution of deeper traps for long afterglow process in synthesized thermoluminescence material. Journal of Mineral and Material Science (JMMS) 3(4): 1049. https://doi.org/10.54026/jmms/1049

Tavangarian, F., Zolko, C.A. & Davami, K. 2021. Synthesis, characterization and formation mechanisms of nanocrystalline akermanite powder. Journal of Materials Research and Technology 11: 792-800. https://doi.org/10.1016/j.jmrt.2021.01.021

Tavangarian, F., Zolko, C.A., Sadeghzade, S., Fayed, M. & Davami, K. 2020. Fabrication, mechanical properties and in‐vitro behavior of akermanite bioceramic. Materials 13(21): 4887. https://doi.org/10.3390/ma13214887

Tengku Mustafa, T.N.A.S., Munusamy, S.R.R., Uy Lan, D.N. & Yunos, N.F.M. 2016. Physical and structural transformations of Perlis carbonate rocks via mechanical activation route. Procedia Chemistry 19: 673-680. https://doi.org/10.1016/j.proche.2016.03.069

Tursunov, O., Dobrowolski, J. & Nowak, W. 2015. Catalytic energy production from municipal solid waste biomass: Case study in Perlis-Malaysia. World Journal of Environmental Engineering 3(1): 7-14. https://doi.org/10.12691/wjee-3-1-2

Wu, C. & Chang, J. 2004. Synthesis and apatite-formation ability of akermanite. Materials Letters 58(9): 2415-2417. https://doi.org/10.1016/j.matlet.2004.02.039

Yamamoto, O., Ohira, T., Mohan, D.J., Fukuda, M., Özkal, B., Sawai, J. & Nakagawa, Z-e. 2008. Antibacterial characteristics of carboncoated CaCO3/Mg0 powder led by the pyrolysis of poly (vinyl alcohol)-dolomite mixture. TANSO 2008(232): 77-81. https://doi.org/10.7209/tanso.2008.77

Yang, H., Hazen, R.M., Downs, R.T. & Finger, L.W. 1997. Structural change associated with the incommensurate-normal phase transition in akermanite, Ca2MgSi2O7, at high pressure. Physics and Chemistry of Minerals 24(7): 510-519. https://doi.org/10.1007/s002690050066

Youness, R.A., Zawrah, M.F. & Taha, M.A. 2024. Fabrication of akermanite scaffolds with high bioactivity and mechanical properties suitable for bone tissue engineering application. Ceramics International 50(18 Part A): 32253-32264. https://doi.org/10.1016/j.ceramint.2024.06.033

Yue, X., Jiao, X., Xu, C., Zhang, Y., Wu, F., Wang, H., Zhu, Q., Zhang, Z., Zhao, L., Sun, X., Yang, X., He, F., Gou, Z., Yang, G. & Zhang, L. 2024. 3D printing novel porous granule-type bioceramics via magnesium tuning biological performances beneficial for implantation and clinical translation. Chemical Engineering Journal 486: 150401. https://doi.org/10.1016/j.cej.2024.150401

Zadehnajar, P., Mirmusavi, M.H., Soleymani Eil Bakhtiari, S., Bakhsheshi‐Rad, H.R., Karbasi, S., RamaKrishna, S. & Berto, F. 2021. Recent advances on akermanite calcium‐silicate ceramic for biomedical applications. International Journal of Applied Ceramic Technology 18(6): 1901-1920. https://doi.org/10.1111/ijac.13814

Zhang, M., Yang, N., Dehghan-Manshadi, A., Venezuela, J., Bermingham, M.J. & Dargusch, M.S. 2023. Fabrication and properties of biodegradable akermanite-reinforced Fe35Mn alloys for temporary orthopedic implant applications. ACS Biomaterials Science and Engineering 9(3): 1261-1273. https://doi.org/10.1021/acsbiomaterials.2c01228

 

*Corresponding author; email: hasnidahnur@gmail.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next